INORGANIC CHEMISTRY

CHAPTER- The d-Block Elements

ONLINE LECTURE

$$
\text { NO. } 6
$$

DATE:- 16, SEPTEMBER 2020

TIME: (9.00A.M.)

Periodic Table of the Elements

There are two types of transition elements:

1) Main transition elements or d-block elements and
2) Inner transition elements or f-block elements

In d-block elements, the penultimate (or last but one) d-subshell is partly filled. While, in f-block elements, the antepenultimate (or last but two) f-subshell is partly filled.

The main transition elements:-
In periodic table, the d-block contains three series of ten elements and a fourth series which is incomplete.

1) The first transition series: - It consists of ten elements from $\operatorname{Sc}(21)$ to Zn (30).

The 3d subshell is progressively filled in this series.
2) The second transition series: - It consists of ten elements from Yttrium (39) to Cd (48). The $4 d$ subshell is progressively filled in this series.

3) The third transition series: - It consists of elements from Lanthanum (57) to

Hg (80). The 5d subshell is progressively filled in this series.
4) The fourth transition series: - This series starts with Actinium (89) and the 6d subshell is progressively filled in this series, but it is incomplete.

The first transition series: -
Electronic configuration: -
In these elements, the last incoming electron is added in 3d subshell and it is progressively filled step by step.

INORGANIC CHEMISTRY

CHAPTER- The d-Block Elements

ONLINE LECTURE

$$
\text { NO. } 7
$$

DATE:- 18, SEPTEMBER 2020

TIME: (8.00A.M.)

Periodic Table of the Elements

There are two types of transition elements:

1) Main transition elements or d-block elements and
2) Inner transition elements or f-block elements

In d-block elements, the penultimate (or last but one) d-subshell is partly filled. While, in f-block elements, the antepenultimate (or last but two) f-subshell is partly filled.

The main transition elements:-
In periodic table, the d-block contains three series of ten elements and a fourth series which is incomplete.

1) The first transition series: - It consists of ten elements from $\operatorname{Sc}(21)$ to Zn (30).

The 3d subshell is progressively filled in this series.
2) The second transition series: - It consists of ten elements from Yttrium (39) to Cd (48). The $4 d$ subshell is progressively filled in this series.

3) The third transition series: - It consists of elements from Lanthanum (57) to

Hg (80). The 5d subshell is progressively filled in this series.
4) The fourth transition series: - This series starts with Actinium (89) and the 6d subshell is progressively filled in this series, but it is incomplete.

The first transition series: -
Electronic configuration: -
In these elements, the last incoming electron is added in 3d subshell and it is progressively filled step by step.

Elements	Symbol	At. number	Electronic configuration
Scandium	Sc	21	$1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{6} 3 \mathrm{~S}^{2} 3 \mathrm{P}^{6} 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{1}$ or $[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{1}$
Titanium	Ti	22	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d} 2$
Vanadium	V	23	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d} 3$
Chromium	Cr	24	$[\mathrm{Ar}] 4 \mathrm{~S}^{1} 3 \mathrm{~d}^{5}$
Manganese	Mn	25	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d} 5$
Iron	Fe	26	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{6}$
Cobalt	Co	27	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{7}$
Nickel	Ni	28	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{8}$
Copper	Cu	29	$[\mathrm{Ar}] 4 \mathrm{~S}^{1} 3 \mathrm{~d}^{10}$
Zinc	Zn	30	$[\mathrm{Ar}] 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{10}$

INORGANIC CHEMISTRY

CHAPTER- The d-Block Elements

ONLINE LECTURE

$$
\text { NO. } 8
$$

DATE:- 23, SEPTEMBER 2020

TIME: (9.00A.M.)

Periodic Table of the Elements

PERIODIC TABLE OF ELEMENTS

The second transition series: -

Electronic configuration: - In these elements, the last incoming electrons are added in $4 d$ subshell and it is progressively filled step by step.

Elements	Symbol	At. number	Electronic configuration
Yttrium	Y	39	$[\mathrm{Kr}] 5 \mathrm{~S}^{2} 4 \mathrm{~d}^{1}$
Zirconium	Zr	40	$[\mathrm{Kr}] 5 \mathrm{~S}^{2} 4 \mathrm{~d} 2$
Niobium	Nb	41	$[\mathrm{Kr}] 5 \mathrm{~S}^{1} 4 \mathrm{~d}^{4}$
Molybdenum	Mo	42	$[\mathrm{Kr}] 5 \mathrm{~S}^{1} 4 \mathrm{~d}^{5}$
Technetium	Tc	43	$[\mathrm{Kr}] 5 \mathrm{~S}^{2} 4 \mathrm{~d}^{5}$
Ruthenium	Ru	44	$[\mathrm{Kr}] 5 \mathrm{~S}^{1} 4 \mathrm{~d}^{7}$
Rhodium	Rh	45	$[\mathrm{Kr}] 5 \mathrm{~S}^{1} 4 \mathrm{~d}^{8}$
Palladium	Pd	46	$[\mathrm{Kr}] 5 \mathrm{~S}^{0} 4 \mathrm{~d}^{10}$
Silver	Ag	47	$[\mathrm{Kr}] 5 \mathrm{~S}^{1} 4 \mathrm{~d}^{10}$
Cadmium	Cd	48	$[\mathrm{Kr}] 5 \mathrm{~S}^{2} 4 \mathrm{~d}^{10}$

$\mathrm{CdSO}_{4}, \mathrm{CdCl}_{2}, \mathrm{CdS}, \mathrm{Cd}(\mathrm{NO} 3)_{2}$

$$
\mathrm{Cd} \rightarrow \mathrm{Cd}^{+2}+2 \mathrm{e}^{-}
$$

$$
5 \mathrm{~S}^{2}, 4 \mathrm{~d}^{10} \rightarrow 5 \mathrm{~S}^{0}, 4 \mathrm{~d}^{10}
$$

$$
\mathrm{Mo}(42) \rightarrow 5 \mathrm{~S}^{2}, 4 \mathrm{~d}^{4} \text { (expected) }
$$

$$
\operatorname{Mo}(42) \rightarrow 5 \mathrm{~S}^{1}, 4 \mathrm{~d}^{5} \text { (observed) }
$$

The third transition series:

Electronic configuration: -

In these elements, the last incoming electrons are added in 5 d subshell and it is progressively filled step by step

Elements	Symbol	At. number	Electronic configuration
Hafnium	Hf	72	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{2}$
Tantalum	Ta	73	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d} 3$
Tungsten	W	74	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{4}$
Rhenium	Re	75	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{5}$
Osmium	Os	76	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{6}$
Iridium	Ir	77	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{7}$
Platinum	Pt	78	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{0} 5 \mathrm{~d}^{10}$
Gold	Au	79	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~S}^{1} 5 \mathrm{~d}^{10}$
Mercury	Hg	80	$[\mathrm{Xe}] 4 f^{14} 6 \mathrm{~S}^{2} 5 \mathrm{~d}^{10}$

Lanthanum $(Z=57)$, with outer electronic configuration $5 \mathrm{~d}^{1} 6 \mathrm{~S}^{2}$ is by definition a d-block element and should be member of this series. But, its physical and chemical properties are similar to the series of f-block elements (i.e. Lanthanides) and hence excluded here.
$\mathrm{La}(57) \rightarrow 1 \mathrm{~S}^{2}, 2 \mathrm{~S}^{2}, 2 \mathrm{P}^{6}, 3 \mathrm{~S}^{2}, 3 \mathrm{P}^{6}, 4 \mathrm{~S}^{2}, 3 \mathrm{~d}^{10}, 4 \mathrm{P}^{6}, 5 \mathrm{~S}^{2}, 4 \mathrm{~d}^{10}, 5 \mathrm{P}^{6}, 6 \mathrm{~S}^{2}, 4 \mathrm{f}^{1}$ The fourth transition series: -

This series starts with Actinium (89). In these elements, 6d-subshell is begins to fill and get progressively filled step by step. This series is incomplete.

Ac $(89) \rightarrow 1 \mathrm{~S}^{2}, 2 \mathrm{~S}^{2}, 2 \mathrm{P}^{6}, 3 \mathrm{~S}^{2}, 3 \mathrm{P}^{6}, 4 \mathrm{~S}^{2}, 3 \mathrm{~d}^{10}, 4 \mathrm{P}^{6}, 5 \mathrm{~S}^{2}, 4 \mathrm{~d}^{10}, 5 \mathrm{P}^{6}, 6 \mathrm{~S}^{2}, 4 \mathrm{f}^{14}, 5 \mathrm{~d}^{10}, 6 \mathrm{P}^{6}$, $7 S^{2}, 5 f^{1}$.

INORGANIC CHEMISTRY

CHAPTER- The d-Block Elements

ONLINE LECTURE

$$
\text { NO. } 9
$$

DATE:- 25, SEPTEMBER 2020
 TIME: (8.00A.M.)

Periodic Table of the Elements

a alamy stock photo

PERIODIC TABLE OF ELEMENTS

General characteristics of d-block elements:

1) Atomic radii: - Generally, the atomic radii of the transition elements decreases from left to right with increase in atomic number. This is due to the combined effect of
i) Addition of electrons in the inner d-subshell and
ii) Increase in the nuclear charge from left to right. The increase in nuclear charge, attracts the electron cloud inwards. However, there are few exceptions.

Elements	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic radius $\left(\mathrm{A}^{0}\right)$	1.62	1.47	1.34	1.27	1.26	1.26	1.25	1.24	1.28	1.38

21

Atomic mass: 44.955
Electron configuration: 2, 8, 9,2

INORGANIC CHEMISTRY

CHAPTER- The d-Block Elements

ONLINE LECTURE

$$
\text { NO. } 10
$$

DATE:- 25, SEPTEMBER 2020

TIME: (8.00A.M.)

Periodic Table of the Elements

PERIODIC TABLE OF ELEMENTS

Objective test

https://forms.gle/wY7W8LFzbF5qmMK38

Feedback form
https://forms.gle/rDGKP1Uky5xTuLGW6

Atomic Size depends upon:

1) Number of energy levels: - Greater the number of energy levels, larger is the size of atoms.

At. Size and no. of energy levels are directly proportional to each other.
i.e. At. Size α No. of energy levels
2) Nuclear charge: - There is a force of attraction between nucleus (Positively charged) and electrons (Negatively charged) in different energy levels.

Atomic size α \qquad
Nuclear charge
i.e. At. Size is inversely proportional to the nuclear charge.

As nuclear charge increases, force of attraction on electrons increases and hence they are attracted towards the nucleus and size decreases.
3) Shielding (Sereening) effect:- The inner energy levels acts as screen and these protects the outer electrons from nuclear attraction. i.e. they decreases the force of attraction between outer electrons and nucleus.

Atomic Size α Shielding effect
As number of inner energy levels increases, the size of atom also increases and vice versa.

First group elements from top to bottom

Element	At. number	Valence shell Configuration	Electronic	Total levels	energy
Hydrogen (H)	1	$1 S^{1}$		1	
Lithium (Li)	3	$2 S^{1}$		2	
Sodium (Na)	11	$3 S^{1}$		3	
Potassium (K)	19	$4 S^{1}$		4	
Rubidium (Rb)	37	$5 S^{1}$		5	
Cesium (Cs)	55	$6 S^{1}$		6	
Francium (Fr)	87	$7 \mathrm{~S}^{1}$		7	

Third period from left to right

Element	Na	Mg	Al	Si	P	S	Cl	Ar
At no.	11	12	13	14	15	16	17	18
Congn.	$3 \mathrm{~S}^{1}$	$3 \mathrm{~S}^{2}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{1}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{2}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{3}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{4}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{5}$	$3 \mathrm{~S}^{2} 3 \mathrm{P}^{6}$
Total energy levels	3	3	3	3	3	3	3	3
Nuclear charge	+11	+12	+13	+14	+15	+16	+17	+18

General characteristics of d-block elements:

1) Atomic radiii: - Generally, the atomic radii of the transition elements decreases from left to right with increase in atomic number. This is due to the combined effect of addition of electrons in the inner d-subshell and increase in the nuclear charge from left to right. The increase in nuclear charge, attracts the electron cloud inwards. However, there are few exceptions.

Elements	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic radius $\left(\mathrm{A}^{0}\right)$	1.62	1.47	1.34	1.27	1.26	1.26	1.25	1.24	1.28	1.38
Electronic	$4 S^{2}$	$4 S^{2}$	$4 S^{2}$	$4 S^{1}$	$4 S^{2}$	$4 S^{2}$	$4 S^{2}$	$4 S^{2}$	$4 S^{1}$	$4 S^{2}$
Configuration	$3 \mathrm{~d}^{1}$	$3 \mathrm{~d}^{2}$	$3 \mathrm{~d}^{3}$	$3 \mathrm{~d}^{5}$	$3 \mathrm{~d}^{5}$	$3 \mathrm{~d}^{6}$	$3 \mathrm{~d}^{7}$	$3 \mathrm{~d}^{8}$	$3 d^{10}$	$3 d^{10}$
Nuclear Charge	+21	+22	+23	+24	+25	+26	+27	+28	+29	+30

2) Ionic radii: - The ionic radii of the transition elements of a given series also decrease with increasing atomic number. For the ions of the given charge, the radius decreases slowly with increase in atomic number. The radii of dipositive ions are close with the radius of Ca^{+2} ions.

Ions	Sc^{+2}	Ti^{+2}	$\mathrm{~V}^{+2}$	Cr^{+2}	Mn^{+2}	Fe^{+2}	Co^{+2}	Ni^{+2}	Cu^{+2}	Zn^{+2}
Ionic radius $\left(\mathrm{A}^{0}\right)$	0.81	0.91	0.88	0.84	0.80	0.76	0.74	0.72	0.72	0.74

