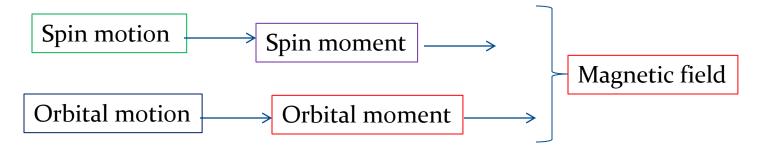


www.alamy.com

PERIODIC TABLE OF ELEMENTS

1 H Hydrogen Nonmetal	1 Atomic Number													1	2 Hee Helium Noble Gas		
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			H	ydrogen		ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	Nonmetal Chemical Group Block							13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Normetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn _{Tin} Post-Transition Metal	51 Sb Antimony Metalloid	52 Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Taa Tantalum Transition Metal	74 WW Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hgg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bi Bismuth Post-Transition Metal	84 Poo Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
		*	57 La Lanthanum	58 Cee Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 HO Holmium	68 Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 Acc Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	Lanthanide 93 Np Neptunium Actinide	94 Putonium Actinide	95 Am Americium Actinide	96 Cm Curium Actinide	97 Bk Berkellum Actinide	98 Cff Californium Actinide	99 ES Einsteinium Actinide	100 Fm Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide

11) Magnetic properties: - The transition metals and their compounds possess magnetic properties. The origin of the magnetic properties of chemical substances is due to the motion of electrons. The electron is treated as a hard negatively charged sphere. There are two types of electron motions. It is spinning on its own axis called spin motion and travelling in a closed orbit about a nucleus, called orbital motion. Each type of motion has a magnetic moment associated with it. The spin motion gives rise to the spin moment and orbital motion gives rise to the orbital moment of the electron. The combination of these two moments gives rise to a magnetic field. Each electron is considered as a micromagnet having a certain value of magnetic moment. The total magnetic moment of a substance is the resultant of the magnetic moments of all the individual electrons.



The total magnetic moment of a substance is the resultant of the magnetic moments of all the individual electrons.

 $\mu_{\text{Total}} = \mu_{\text{eff.}} = \mu_{\text{orbital}} + \mu_{\text{spin}}$

$$\mu_{\rm eff.} \approx \mu_{\rm spin} \approx \sqrt{n(n+2)}$$

Where, n is no. of unpaired electrons.

The magnetic moment of an electron is thus partly due to its spin motion and partly due to its orbital motion. The total or effective magnetic moment (μ_{eff}) of a substance containing an unpaired electron is due to $\mu_{orbital}$ and μ_{spin} . In transition metal ions, the unpaired electrons are generally present in the outer dorbitals. As the d-orbitals are more diffused (spread), they get disturbed. The orbital motion of such unpaired electrons is very much disturbed by the electrons of the surrounding ligands which quench the $\mu_{orbital}$ in the transition metal compounds. Therefore, in such cases, the μ_{spin} becomes much more significant than the $\mu_{orbital}$. Hence, $\mu_{orbital}$ may be neglected. The μ_{eff} may be given by the expression,

 $\mu_{\rm eff.} \approx \mu_{\rm spin} \approx \sqrt{n(n+2)}$

Where, n is the number of unpaired electrons. The magnetic moment is expressed in Bohr magneton (BM), which is given by the equation,

BM = $eh/4\pi$ mc.

Where, h = Planck's constant, e = electronic charge, c = velocity of light and m = mass of electron.

The effective magnetic moment of a substance thus depends mainly on the number of unpaired electrons present in it.

e.g. For one electron, $\mu_{spin} = \sqrt{n(n+2)} = \sqrt{1(1+2)} = \sqrt{3}$

= 1.732 BM

For two electrons, $\mu_{spin} = \sqrt{2(2+2)} = \sqrt{8}$

= 2.83 BM

For three electrons, $\mu_{spin} = \sqrt{3(3+2)} = \sqrt{15} = 3.87 \text{ BM}$

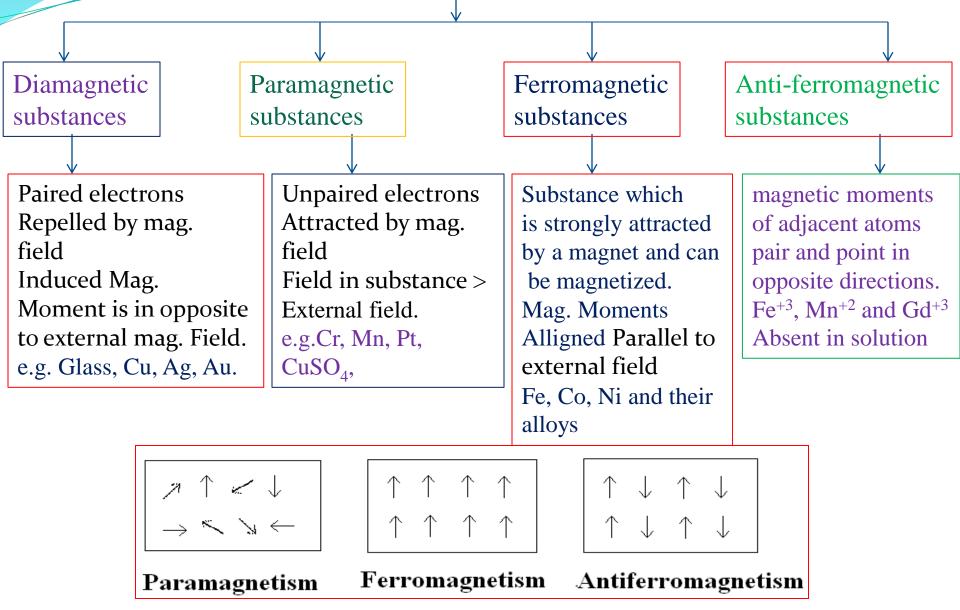
The actual magnetic moments may be slightly different from these values. This depends upon the quenching of $\mu_{orbital}$ of the electrons in the ions. This in turn depends upon the arrangement (geometry) of the ligands around the metal ions in their complexes.

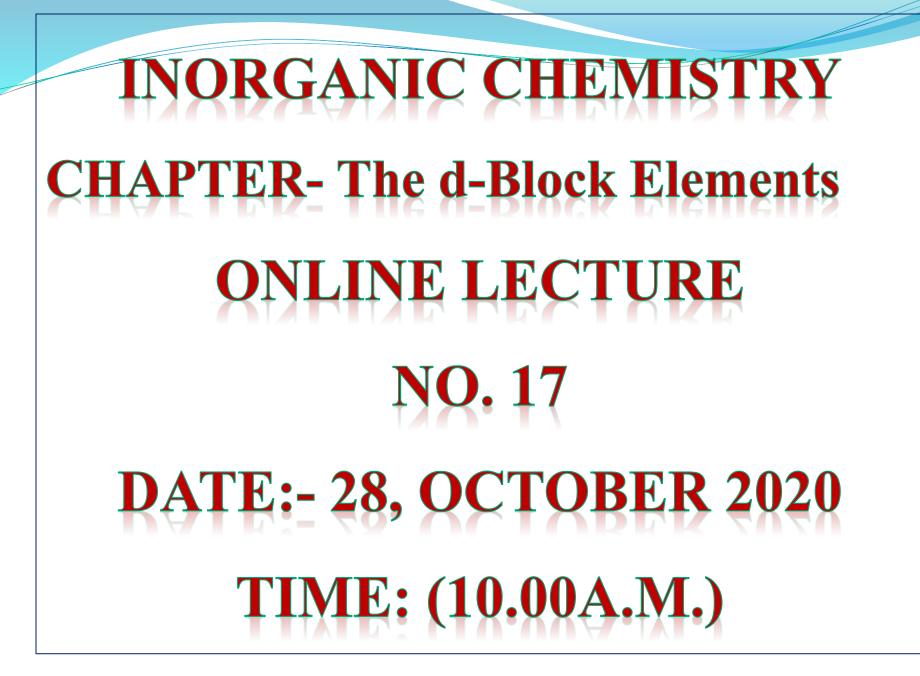
The value of magnetic moment is used to find the number of unpaired electrons in the atom or ion.

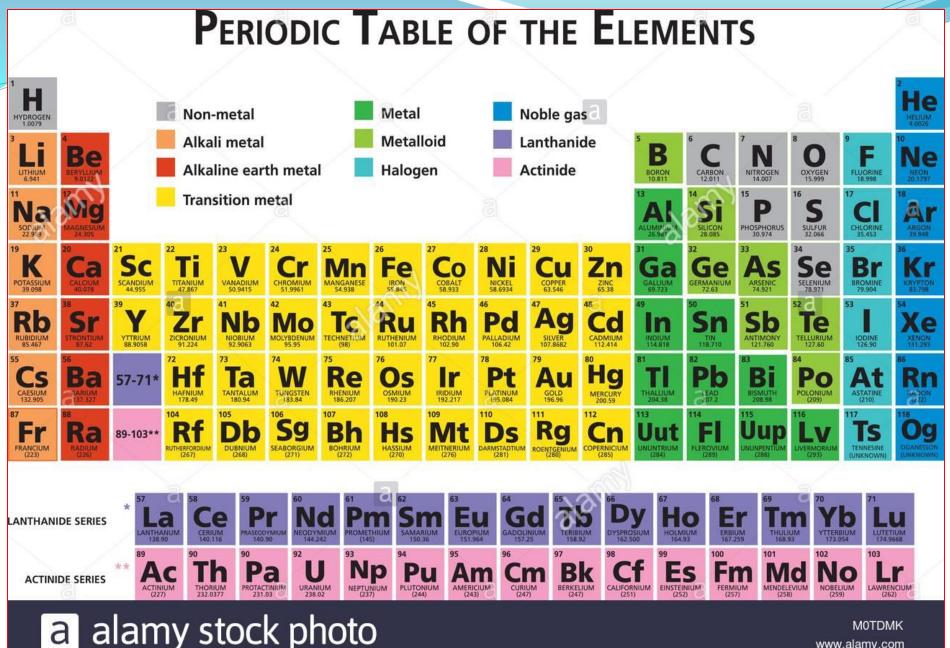
Types of Magnetic substances: - There are four types of magnetic materials a) Diamagnetic b) Paramagnetic c) Ferromagnetic and d) Anti-ferromagnetic. a) **Diamagnetic substances:** - It is defined as a substance which is repelled by a magnetic field. The diamagnetism is due to the presence of the paired electrons in the substance. The diamagnetic behavior is due to the fact that small magnetic moments are induced into a substance when a magnetic field is brought close to the substance. But, these induced magnetic moments are in opposite direction to the external magnetic field. Thus, the field in the substance is less than the external magnetic field. This causes repulsion of the substance by the magnetic field. e.g. Glass, Cu, Ag, Au.

b) Paramagnetic substances: - It is defined as a substance which is attracted into a magnetic field. Thus, the field in the substance is greater than external field. The paramagnetism is due to the presence of one or more unpaired electrons in atoms, ions or molecules. e.g.Cr, Mn, Pt, $CuSO_4$, etc.

Magnetic substances




Fig. Arrangements of spins of electrons in different magnetic materials


c) Ferromagnetic substances: - These substances may be considered as a special case of paramagnetism. It is defined as a substance which is strongly attracted by a magnet and can be magnetized.

In these substances, the magnetic moments due to unpaired electron spin are aligned parallel to the external magnetic field. These are strongly paramagnetic substances. e.g. Fe, Co, Ni and their alloys.

d) Anti-ferromagnetic substances: - It is a substance in which the magnetic moments of adjacent atoms pair and point in opposite directions. This gives magnetic moment less than would be expected for any array of independent ions. It occurs in many simple salts of Fe^{+3} , Mn^{+2} and Gd^{+3} .

Anti-ferromagnetism depends on orientation of spins and hence it disappears in solution.

www.alamy.com

PERIODIC TABLE OF ELEMENTS

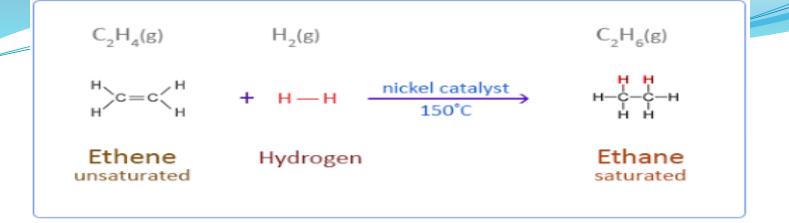
1 H Hydrogen Nonmetal	1 Atomic Number)	2 Helium Noble Gas		
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			H	H ydrogen		Symbol Name						6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Nee Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	Nonmetal Chemical Group Block 13 14 15 16 All minum Silicon Silicon Phosphorus Sulfur Nonmetal Nometal Nometal Nometal Nometal								17 Cl Chlorine Halogen	18 Argon Noble Gas			
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn _{Zinc} Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 MO Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Ag silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53 I Iodine Halogen	54 Xeo Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Ba Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bismuth	84 PO Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Ra Radium	**	104 Rf Rutherfordium	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
		*	57 La	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb	71 Lu
** 89 ACC Actinium Actinide				90 Th Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	93 Npp Neptunium Actinide	94 Putonium Actinide	95 Americium Attinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	B B Californium Actinide	99 ES Einsteinium Actinide	Lanthanide 100 Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide

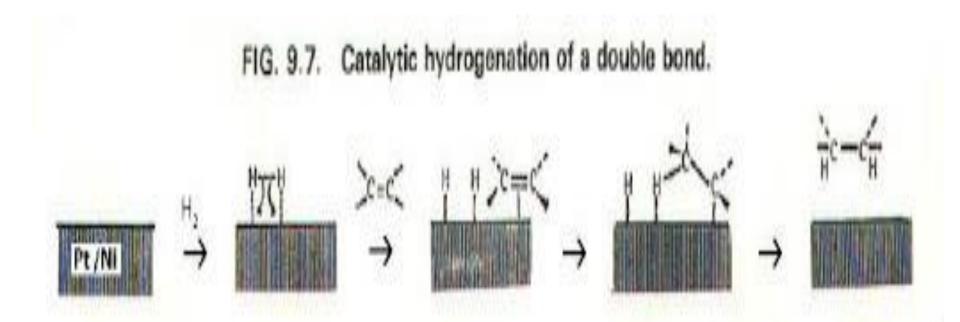
12) Catalytic properties: - A catalyst is a substance which alters the rate of a chemical reaction without itself being permanently changed by the reaction. Most of the transition elements and their compounds have good catalytic properties. The transition elements because of their variable valency can very readily form unstable intermediate compounds. These elements can also provide a large surface area for the reactants to be adsorbed and thus come close to one another for the reaction to take place on the surface of the catalyst itself.

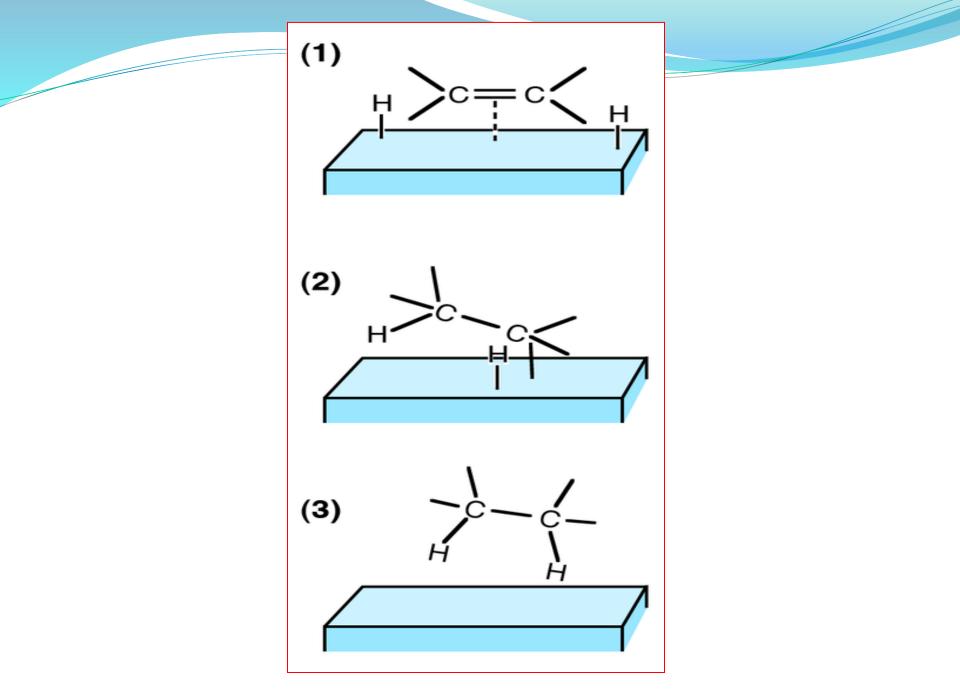
According to the theory of catalysis, a catalyst forms an unstable intermediate compound which readily decomposes to give product and regenerate the catalyst. Step 1) Formation of unstable intermediate compound. Step 1) Formation of unstable intermediate compound

 $A + B + Transition metal Catalyst \rightarrow A-B-Catalyst$ Reactant unstable intermediate compound

Step 2) Formation of product and regeneration of catalyst

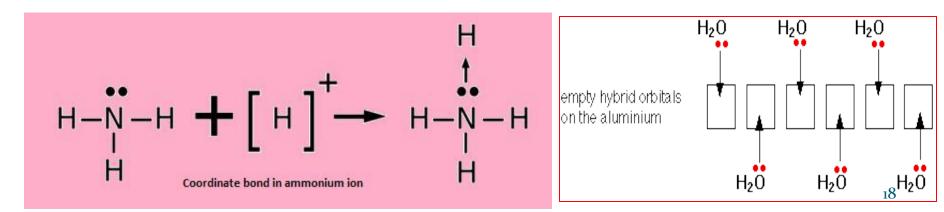

 $A-B-Catalyst \rightarrow C + Catalyst$


Product


There are many examples of transition metals and their compounds acting as catalysts. Pt, Fe, V_2O_5 , Ni, Pd etc. Pt is a general catalyst. It is particularly used in the Contact process involving combination of SO₂ and O₂ to form SO₃. For same reaction, V_2O_5 is also good catalyst. Iron is used in Haber's process for combination of N₂ and H₂ to produce NH₃. Ni is good catalyst in the hydrogenation process.

 $2SO_2 + O_2 \rightarrow 2SO_3$

 $N_2 + 3H_2 \rightarrow 2NH_3$



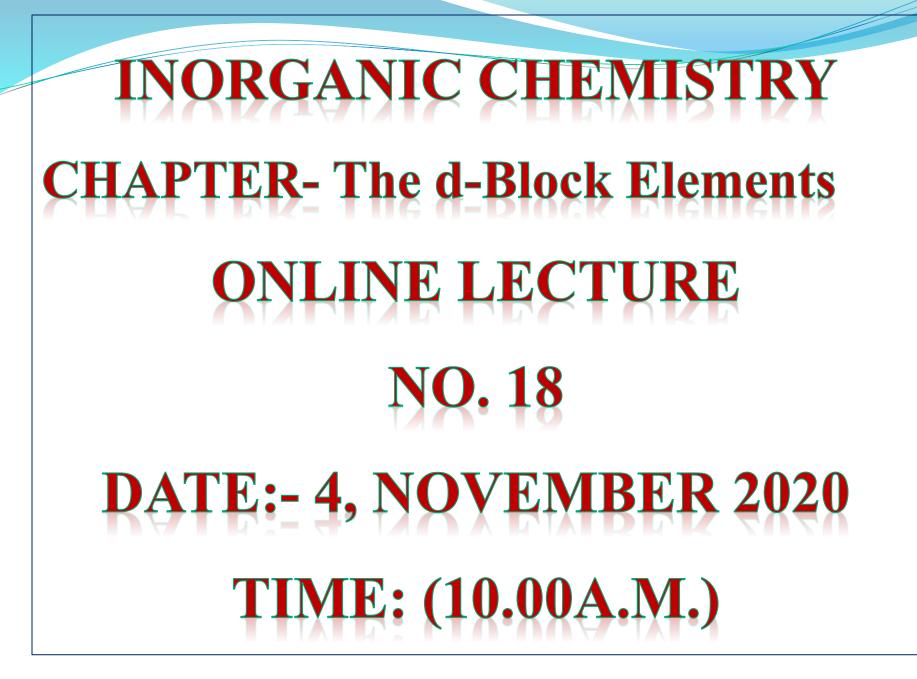
13) Tendency to form complexes: - The transition metals have the peculiar tendency to form coordination complexes. The tendency of cations of transition metals to form complexes is due to two factors:

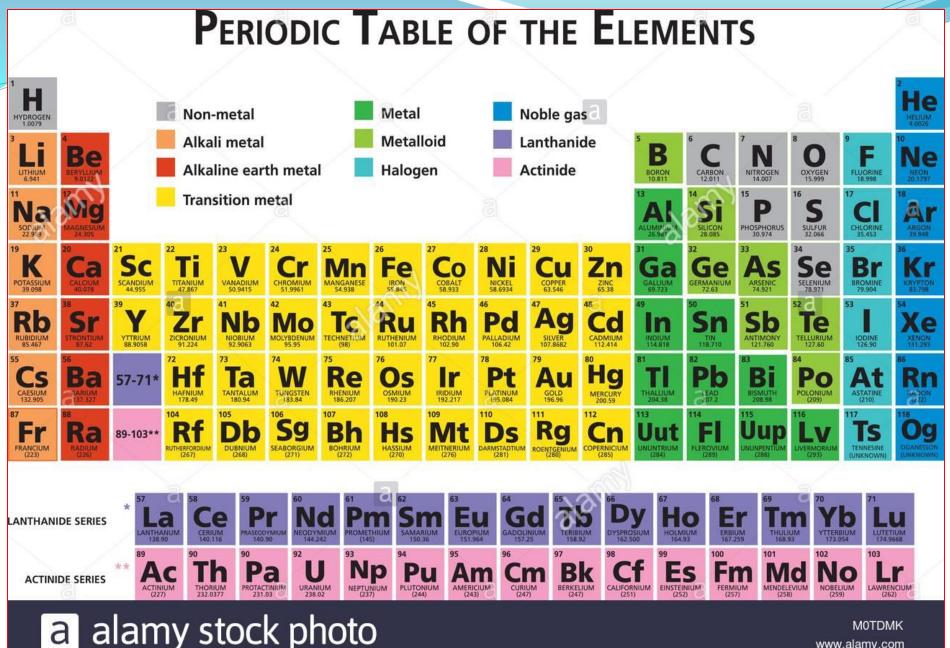
i) The size of these ions is very small. This gives high positive charge density to the ions. This also helps the acceptance of lone pairs of electrons from other molecules.2) They have vacant orbitals of suitable energy. The vacant orbitals can easily accept lone pairs of electrons from other molecules.

 $N_7 \longrightarrow 1S^2$, $2S^2$, $2Px^1$, $2Py^1$, $2Pz^1$

14) Metallic properties: - The metallic or non-metallic character of the element depends upon its electronic configuration. The d-block elements have $ns^{0,1or 2}$, $(n-1)d^{1-10}$ configuration. The differentiating (last incoming) electron enters in (n-1) d-orbitals of penultimate shell. The number of electrons in the outermost shell are very small i.e. 1 or 2. These outermost few electrons can be easily removed to form positive ions. Thus, all the transition elements are metals.

i) They are good conductors of heat and electricity.


ii) They are malleable (sheets) and ductile (wire).


iii) They form alloys with many other metals.

iv) They are hard and brittle and hence are different from non-transition elements. The Hg is exception.

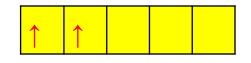
- v) They have high density and low atomic volume.
- vi) They form coloured and paramagnetic compounds.

vii) Both covalent and metallic bonding exists amongst the atoms of transition elements. The covalent bonding is due to the overlapping of empty d-orbitals of metal ions. While, the metallic bonding is due to S-electrons.

www.alamy.com

PERIODIC TABLE OF ELEMENTS

1 H Hydrogen Nonmetal		1 Atomic Number														2 Hee Helium Noble Gas	
3 Lithium Alkali Metal	4 Bee Beryllium Aikaline Earth Metal			Hy	ydrogen		ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Normetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	AI Si Silicon Pho								15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas	
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fee Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ruu Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn _{Tin} Post-Transition Metal	51 Sb Antimony Metalloid	52 Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Atkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 WW Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bi Bismuth Post-Transition Metal	84 PO Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
		*	57 La Lanthanum	58 Cee Cerium	59 Pr Praseodymium Lanthanide	60 Nd Neodymium Lanthanide	61 Promethium Lanthanide	62 Sm Samarium Lanthanide	63 Eu Europium	64 Gd Gadolinium Lanthanide	65 Tb Terbium	66 Dy Dysprosium Lanthanide	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium Lanthanide	71 Luu Lutetium Lanthanide
** 8 9 AC				90 Th Thorium Actinide	91 Pa Protactinium Actinide	92 U Uranium Actinide	93 Np Neptunium Actinide	94 Pu Plutonium Actinide	95 Americium Attinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	98 Cf Californium Actinide	99 Es Einsteinium Actinide	100 Fm Fermium Actinide	101 Mdd Mendelevium Actinide	102 NO Nobelium Actinide	103 Lr Lawrencium Actinide


Problems: 1) Find the spin magnetic moment μ_{spin} of Fe⁺² in FeSO₄? (At. no. of Fe is 26). **Ans:-** $Fe(26) = 4S^23d^6$ $Fe \rightarrow Fe^{+2} + 2e^{-1}$ $Fe^{+2} = 24 \text{ electrons} = 4S^0 3d^6$ i.e. n= 4 (no.of unpaired electrons only) $\mu_{\rm spin} = \sqrt{n(n+2)} = \sqrt{4(4+2)} = \sqrt{24} = 4.89 \text{ BM}$

Problems: 2) Find the effective magnetic moment μ eff. of Ti⁺² in (TiO2)⁻²? (At. no. of Ti is 22).

Ans:- Ti (22) = $4S^23d^2$. In (TiO2)⁻², the oxidation state of Ti is +2.

 $Ti \rightarrow Ti^{+2} + 2e^{-}$

 $Ti^{+2} = 20 \ electrons = 4S^0 \ 3d^2$

i.e. n= 2 (no.of unpaired electrons only) $\mu \text{spin} = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8} = 2.83 \text{ BM}$ Problems: 3) Find the effective magnetic moment μ eff. of Cr in Cr₂O₃ ? (Given: At. no. of Cr is 24).

Ans:- Cr (24) = $4S^23d^4$. In Cr₂O₃, the oxidation state of Cr is +3.

 $Cr \rightarrow Cr^{+3} + 3e^{-3}$

```
Cr^{+3} = 21 electrons = 4S^0 3d^3
```

i.e. n= 3 (no.of unpaired electrons only)

 $\mu \text{spin} = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15} = 3.87 \text{ BM}$

Problems: 4) Find the effective magnetic moment µeff. of Mn in MnO4⁻ ? (Given: At. no. of Mn is 25)

```
Ans:- Mn (25) = 4S^23d^5. In MnO4<sup>-</sup>, the oxidation state of Mn is +7.
```

 $Mn \to Mn^{+7} + 7e^{-}$

```
Mn^{+7} = 18 electrons = 4S^0 3d^0
```

i.e. n= 0 (There are no unpaired electrons) μ eff. = $\sqrt{n(n+2)} = \sqrt{0(0+2)} = \sqrt{0} = 0.0$ BM