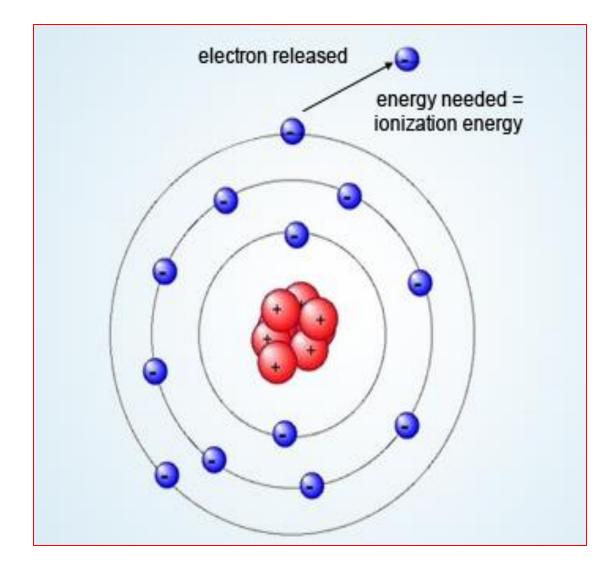


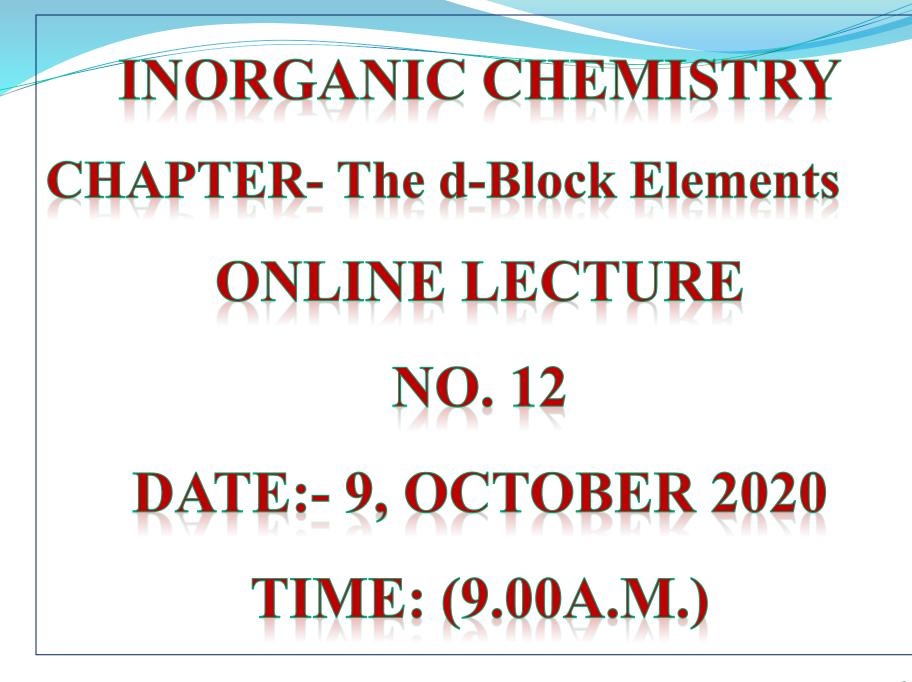
www.alamy.com

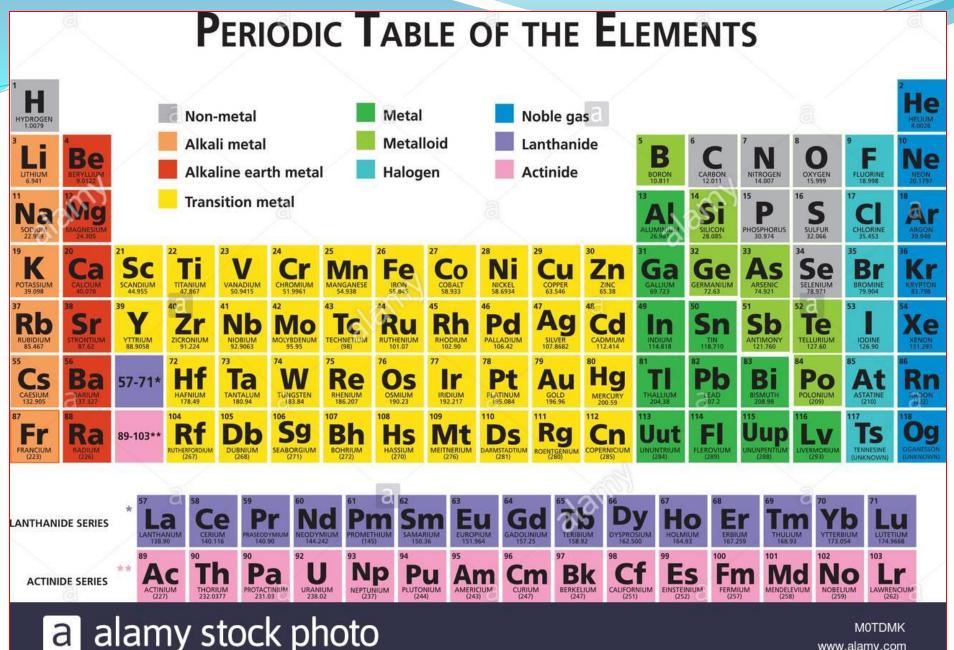
1 H Hydrogen Nonmetal					1	Ato	mic Nur	nber				I	Pub		nem	1	2 Hee Helium Noble Gas
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			Н	ydrogen		ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	onmetal	Che	mical Gro	up Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Normetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn _{Tin} Post-Transition Metal	51 Sb Antimony Metalloid	52 Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 WW Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hgg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bi Bismuth Post-Transition Metal	84 Poo Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
		*	57 La Lanthanum	58 Cee Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy _{Dysprosium}	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 Acc Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	Lanthanide 93 Np Neptunium Actinide	94 Putonium Actinide	95 Am Americium Actinide	96 Cm Curium Actinide	97 Bk Berkellum Actinide	98 Cff Californium Actinide	99 ES Einsteinium Actinide	100 Fm Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide

3) Molar volume and Densities: - The molar volumes of transition elements are much lower than those of the S-block elements. This is because, in a transition series, as the atomic number increases, the extra electrons are added in inner d-orbitals and extra protons are added in the nucleus. The extra nuclear charge attracts all the electrons more strongly, which decreases the atomic volume.

Density is defined as mass per unit volume (g/cm³). The density increases with decrease in atomic volume. The densities of transition elements are quite high. Most of these elements have densities greater than 5 g/cm³. The exceptions are Sc, Ti and Y with density 3.01, 4.51 and 4.47 g/cm³ respectively.


4) Melting points and boiling points: - The melting point and boiling points of the transition elements are generally very high (Above 900^oc). This is because of the close packed structure in these elements. The melting points of d-block elements are much higher than those of S-block elements. But the melting points of Zn (420° c), Cd (321° c) and Hg (-39° c) are much lower than other d-block elements. These are notable exceptions. These elements are moderately volatile. This is due to the following reasons:

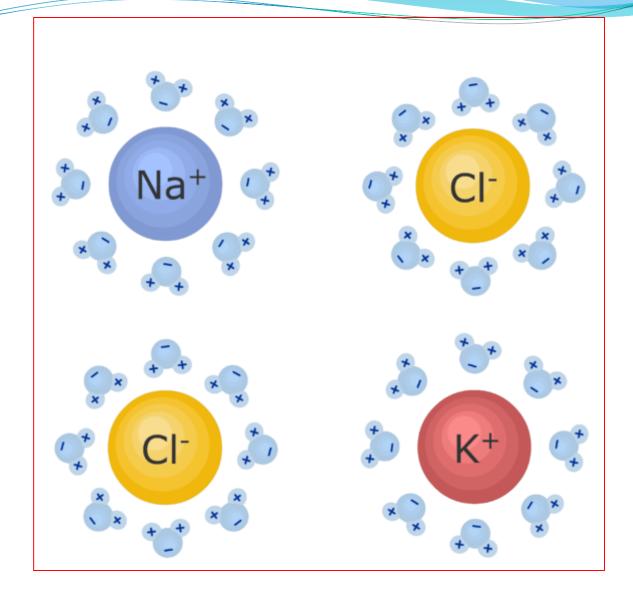

- i) These elements are non-transition elements.
- ii) They have completely filled sets of d-orbitals.

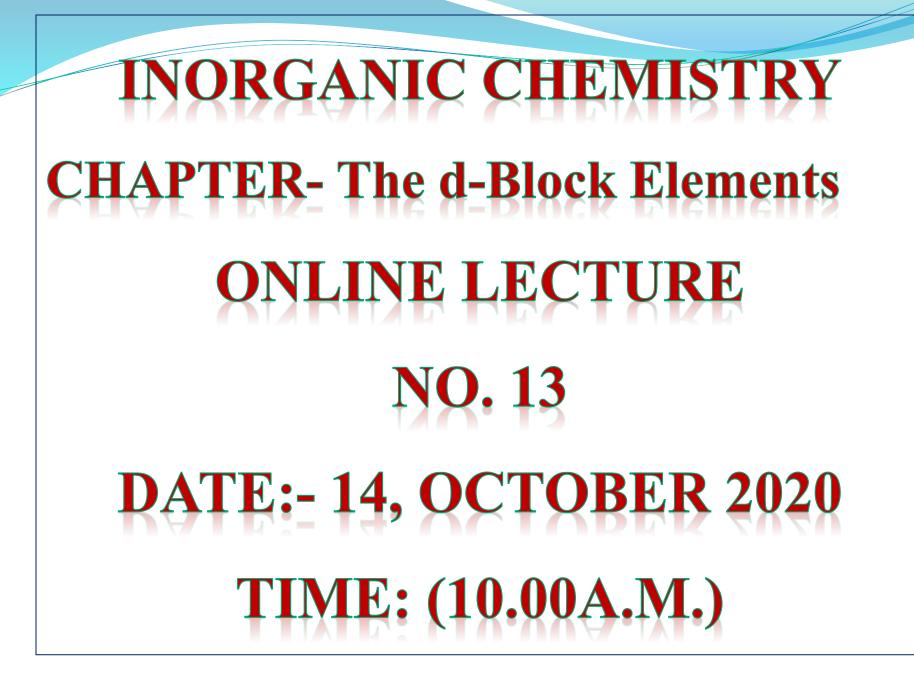

iii) The covalent bonding cannot take place amongst the atoms of these elements.Due to vacant d-orbitals in other d-block elements, the covalent bonding takes place. The melting and boiling points of other d-block elements are high due to covalent bonding.

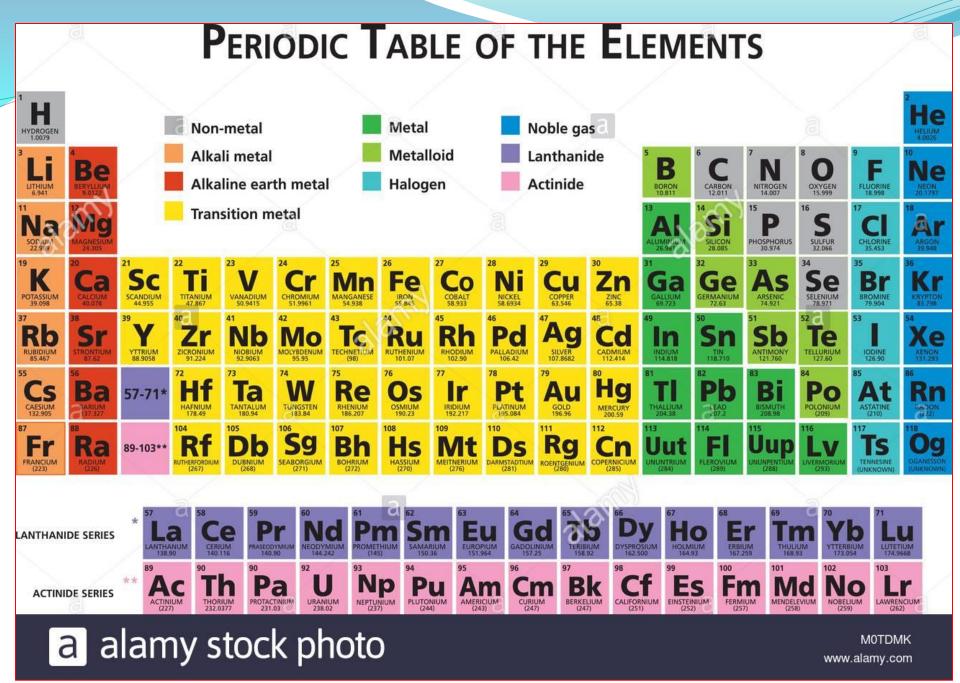
5) Ionisation energies: - The energy required to remove an electron from the last orbit of an atom is called as ionization energy. The energy is usually expressed in KJ/mole. When this energy is expressed in electron volt, then it is known as ionization potential. The I.P. values of d-block elements are intermediate between those of S-block and P-block elements.

The ionization energy increases slowly on moving along the transition series from left to right. This is due to slow decrease in atomic size and increase in nuclear charge from left to right. The I. P. value of Zn is much higher due to the special stability of completely filled 3d subshell. Similarly, the I. P. values of Cr and Cu are much higher than those of their neighbours. This is due to the special stability of half filled (d⁵) subshell for Cr and fully filled (d¹⁰) subshell for Cu ions.

www.alamy.com


1 H Hydrogen Nonmetal					1	Ato	mic Nur	nber				I	Pub		nem)	2 Helium Noble Gas
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			H	Hydrogen	S ^v Nam		bol				5 B Boron Metalloid	6 C Carbon Nonmetai	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neo Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	onmetal	Chei	mical Gro	up Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fee Iron Transition Metal	27 COD Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 MO Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Ag silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53 I Iodine Halogen	54 Xeo Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Ba Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bismuth	84 Po Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Ra Radium	**	104 Rf Rutherfordium	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Con Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
		*	57 La	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb	71 Lu
		**	89 Actinium Actinide	90 Tho Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	93 Npp Neptunium Actinide	94 Putonium Actinide	B B Americium Attinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	Lanthanide 98 Cff Californium Actinide	99 Es Einsteinium Actinide	Lanthanide 100 Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide


6) Reactivity: - Many of d-block elements are sufficiently reactive. They react with mineral acids (HCl, HNO₃, H₂SO₄) and liberate hydrogen (H₂) gas. Fe + 2HCl \rightarrow FeCl₂ +H₂(g)


Few of these elements possess noble character. The Pt and gold are noble metals. In general, the d-block elements are less reactive. The reactivity of the elements goes on decreasing across a series.

The factors which reduce the reactivity of d-block elements are:

- a) They have comparatively small atoms.
- b) They have very high ionization energies.
- c) They have high melting points.
- d) They have high heats of sublimation due to covalent bonding. They require large amount of energy to change them from solid to vapour state.
- e) They have low heats of hydration of their ions.

1 H Hydrogen Nonmetal					1	Ato	mic Nur	nber				I	Pub		nem	1	2 Hee Helium Noble Gas
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			Н	ydrogen		ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	onmetal	Che	mical Gro	up Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Normetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn _{Tin} Post-Transition Metal	51 Sb Antimony Metalloid	52 Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 WW Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hgg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bi Bismuth Post-Transition Metal	84 Poo Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
		*	57 La Lanthanum	58 Cec Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy _{Dysprosium}	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 Acc Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	Lanthanide 93 Np Neptunium Actinide	94 Putonium Actinide	95 Am Americium Actinide	96 Cm Curium Actinide	97 Bk Berkellum Actinide	98 Cff Californium Actinide	99 ES Einsteinium Actinide	100 Fm Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide

1) Find the oxidation state of Mn in KMnO4

K = +1, Mn = x, O = -2(+1)+x +(-2) × 4 = 0 1 +x -8 =0 x-7 = 0

x = +7

Therefore, oxidation state of Mn is +7.

2) Find oxidation state of Carbon in CO_3^{-2}

C = x, O = -2

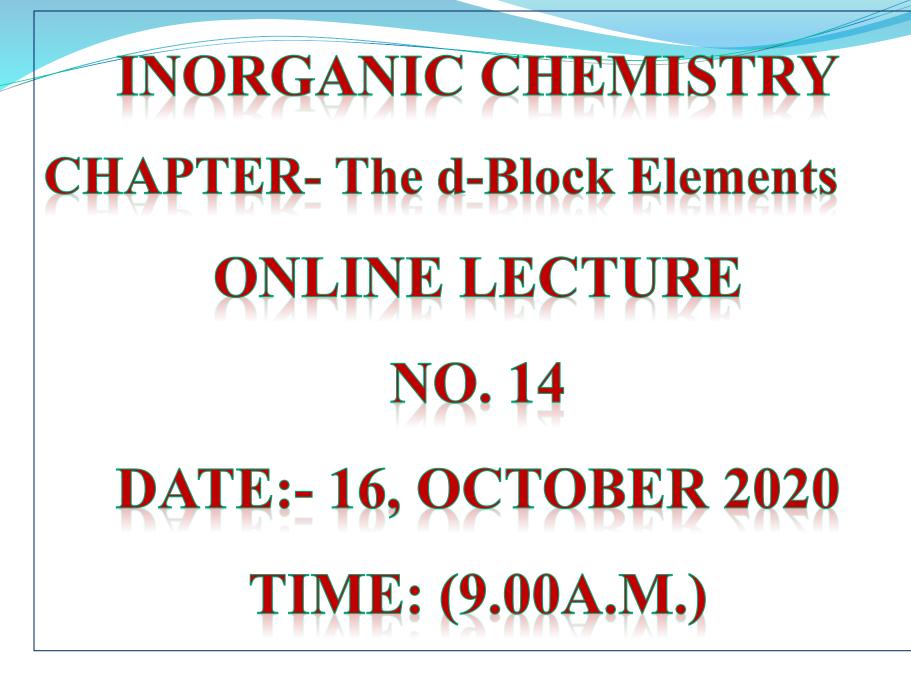
 $x + (-2) \times 3 = -2$

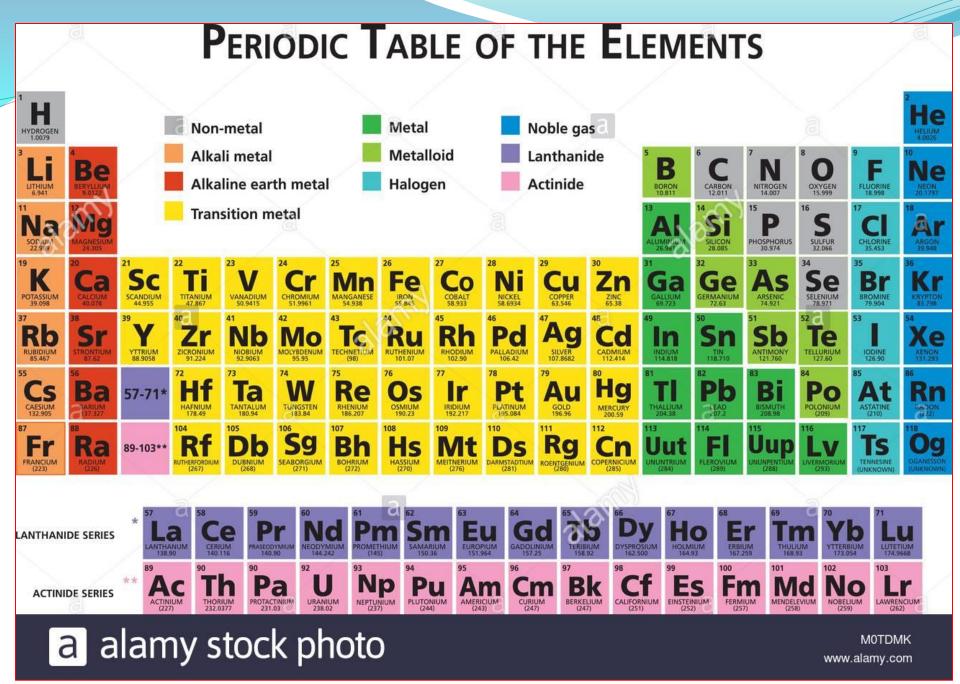
x - 6 = -2

x = -2+6

x = +4.

3)Find oxidation state of N in NH4⁺ N = x, H = +1 x + (+1) \times 4 = +1 x +4 = +1 x = 1-4 x = -3 7) Oxidation states: - "The oxidation state of an element is the charge (positive or


negative) which the element posses in the compound". The transition elements show variable oxidation states. This is because, the energy difference between the (n-1) d and nS-orbitals is very small and electrons from both energy levels can be used for bonding. i.e. The


oxidation states of transition elements are related to electronic configurations.

Elements	Electronic confg ⁿ .	Oxidation states
Scandium	$3d^{1} 4S^{2}$	+2, +3
Titanium	$3d^2 4S^2$	+2, +3, +4
Vanadium	$3d3 4S^2$	+2, +3, +4, +5
Chromium	$3d^5 4S^1$	+1, +2, +3, +4, +5, +6
Manganese	3d5 4S ²	+2, +3, +4, +5, +6, +7
Iron	$3d^6 4S^2$	+2, +3, +4, +5, +6
Cobalt	$3d^{7} 4S^{2}$	+2, +3, +4
Nickel	$3d^8 4S^2$	+2, +3, +4
Copper	$3d^{10} 4S^{1}$	+1, +2
Zinc	$3d^{10} 4S^2$	+2 17

Scandium shows +2 oxid.ⁿ state by using its two 4S electrons. It shows +3 oxid.ⁿ state also by using its two 4S electrons and one d-electron. Thus, Sc shows +2 and +3 oxid.ⁿ states. Similarly, Cr has only one S-electron and five d-electrons. It can show +1state by using only one S-electron in chemical bonding. In addition, it can show +2, +3, +4, +5 and +6 states when it uses one, two, three, four or all the five of its d-orbitals as well. Hence, up to Mn, the minimum oxidation state is given by the number of electrons in outer S-subshell and the maximum oxidation state is given by the 'sum' of the outer S and d-electrons. Up to Mn, the 3d subshell is no more than half filled.

In the next elements, Fe ($3d^6 4S^2$), Co ($3d^7 4S^2$), Ni ($3d^8 4S^2$), Cu ($3d^{10} 4S^1$) and Zn ($3d^{10} 4S^2$) the number of 3d electrons are more than five. The minimum oxidation state is still equal to the number of the outer S-electrons. However, the maximum oxidation state is not related at all with the electronic configuration.

1 H Hydrogen Nonmetal					1	Ato	mic Nur	nber				I	Pub		nem	1	2 Hee Helium Noble Gas
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			Н	ydrogen		ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	onmetal	Che	mical Gro	up Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Normetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn _{Tin} Post-Transition Metal	51 Sb Antimony Metalloid	52 Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 WW Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hgg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bi Bismuth Post-Transition Metal	84 Poo Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
		*	57 La Lanthanum	58 Cec Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy _{Dysprosium}	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 Acc Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	Lanthanide 93 Np Neptunium Actinide	94 Putonium Actinide	95 Am Americium Actinide	96 Cm Curium Actinide	97 Bk Berkellum Actinide	98 Cff Californium Actinide	99 ES Einsteinium Actinide	100 Fm Fermium Actinide	Lanthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	103 Lr Lawrencium Actinide

8) Reducing properties: - Except Copper, all the first transition series elements have higher values of standard oxidation potential than that of standard hydrogen electrode (SHE). Hence, these metals except Copper can lose electrons and get easily oxidized to their ions in aqueous solutions.

 $M \rightarrow M^{+2}(aq.) + 2e^{-}$

Therefore, they are good reducing agents. Because, a reducing agent always losses electrons and undergoes oxidation. But, they are less powerful reducing agents than alkali or alkaline earth metals. This is because,

i) Their atomic sizes are small.

ii) They have high ionization energies.

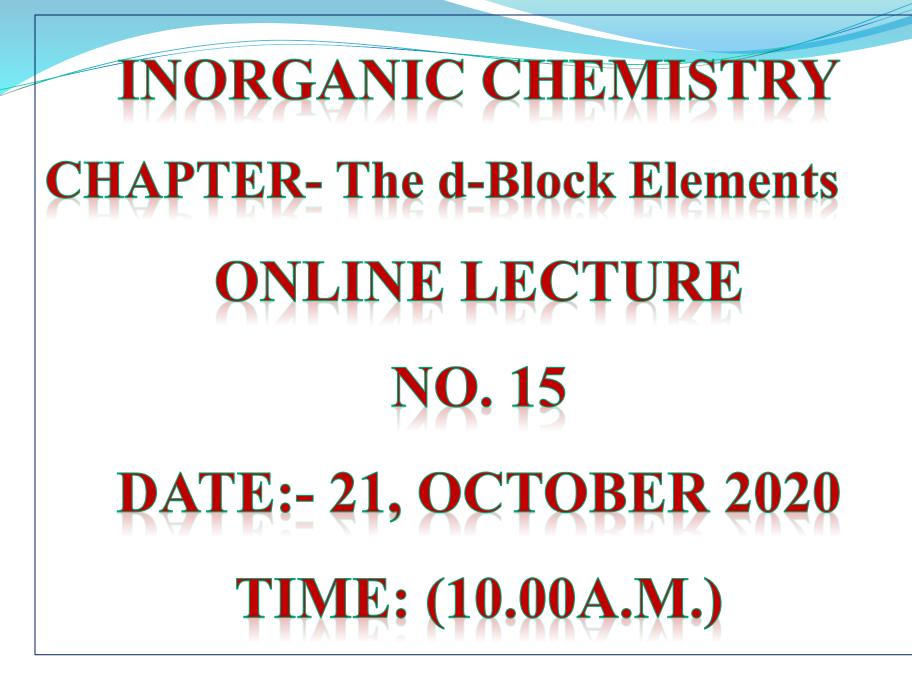
iii) They have low heats of hydration of their ions.

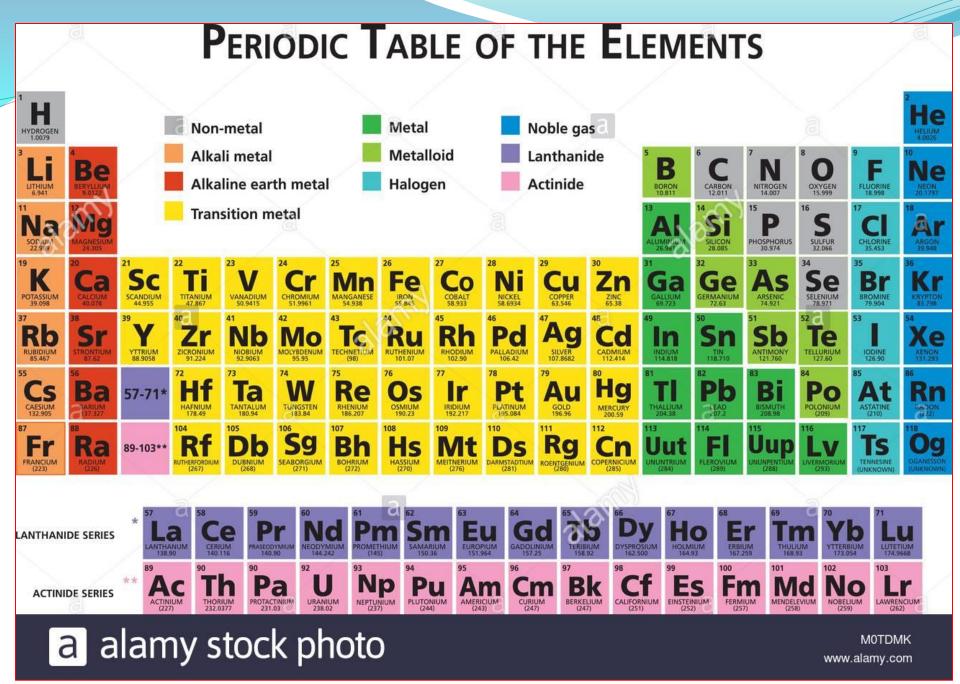
iv) They have high heats of vapourisation.

Copper has a negative oxidation potential. This means that, copper is not able to displace H⁺ ions from acid solutions. The reaction,

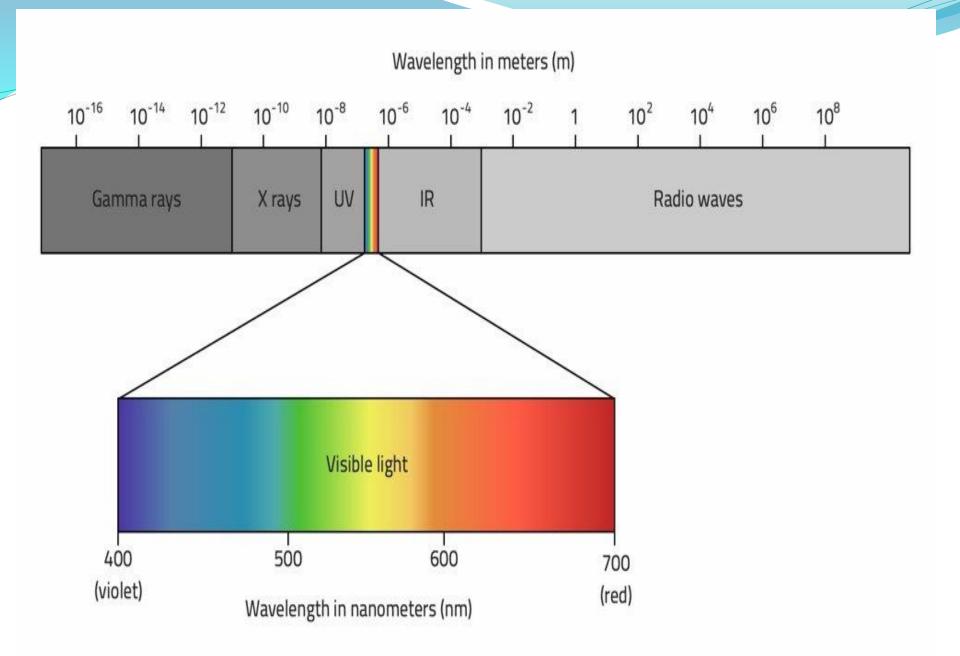
 $Cu + 2H^+(aq.) \rightarrow Cu^{+2}(aq.) + H_2(g)$

does not take place. The tendency of Cu to change into Cu^{+2} ion, $Cu \rightarrow Cu^{+2}(aq.)$

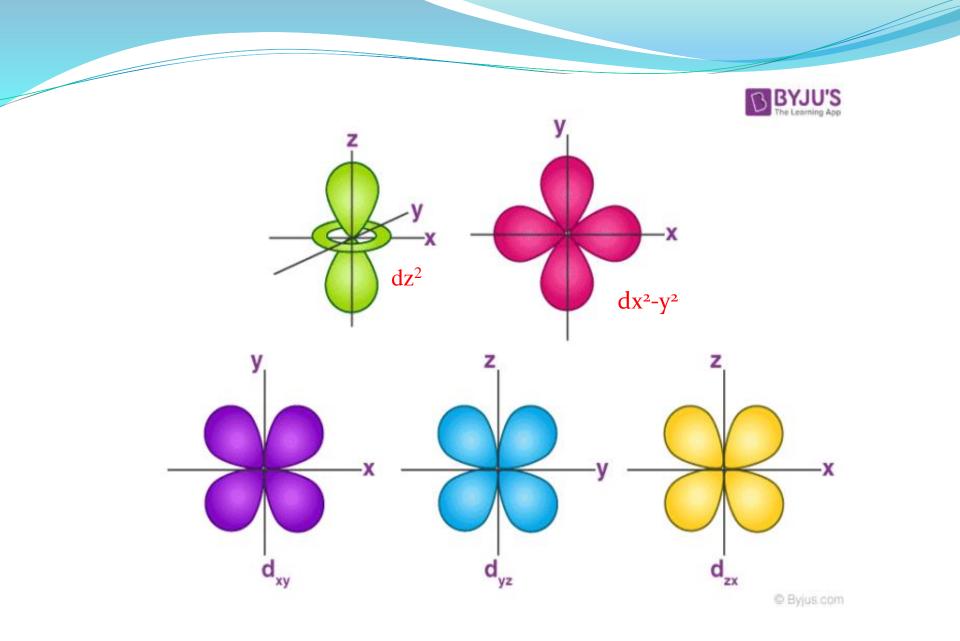

 $+2e^{-}$ is extremely small. Hence, Copper is a poor reducing agent.


9) Standard electrode potentials: - Standard electrode potential is defined as the potential developed at the single electrode at 298K due to half cell reaction, when an electrode is dipped in its salt solution having unit activity.

The standard electrode potential of H_2 electrode is taken as zero. Except Copper, the standard oxidation potential of first transition series elements are much higher than that of SHE. Therefore, it is expected that, these metals, except Cu, evolve H_2 gas when reacted with acid solution.


 $M + 2H^{+}(aq.) \rightarrow M^{+2}(aq.) + H_{2}(g)$

However, these metals react very slowly with acids. Some of these metals get protected from the attack of acids due to the formation of thin impervious layer of an inert oxide. e.g. Cr is so unreactive that it can be used as a protective non-oxidizing metal, because it gets coated with a non-reactive oxide Cr_2O_3 .


1 H Hydrogen Normetal					1	Ato	mic Nur	nber				I	Pub		nem		2 Hee Helium Noble Gas
3 Lii Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			H	H ydrogen	S [°] Nam	ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neo Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Aikaline Earth Metal	Nonmetal Chemical Group Block 13												15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Caa Calcium Alkaline Earth Metal	21 Scc Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic								34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antimony Metalloid	52 Telurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Baa Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hgg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bismuth	84 PO Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr Francium Alkali Metal	88 Raa Radium	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
		*	57 La	58 Cee	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 HO Holmium	68 Er Erbium	69 Tm Thulium	70 Yb	71 Lu
		**	89 Actinium Actinide	90 Thorium Actinide	Unthanide 91 Pa Protactinium Actinide	Lanthanide 92 U Uranium Actinide	93 Np Neptunium Actinide	94 Putonium Actinide	95 Americium Attinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	Lanthanide 98 Cff Californium Actinide	99 ES Einsteinium Actinide	Lanthanide 100 Fermium Actinide	Lenthanide 101 Mdd Mendelevium Actinide	Lanthanide 102 Nobelium Actinide	Lanthanide 103 Lr Lawrencium Actinide

10) Colour: - Compounds of transition metals are usually coloured. The colour is due to the presence of partly filled d-subshell and preferential absorption of energy of some visible light. The energies of d-orbitals of metal ions in their compounds are split into two sets of energy levels, due to crystal field effects. The colour of transition metal ions arises due to the excitation of electrons from the d-orbitals of lower energy (t_2g) to the d-orbitals of higher energy (eg).

Figure 1: d-d transition in Ti⁺³ ion

The energy difference between these two levels is small. The light energy for such d-d electron transition is absorbed from visible region. The visible region consists of energy of seven colors (VIBGYOR). The colour of the substance is from the property of the substance to absorb light of certain wavelength of visible light. For every type of absorbed energy from visible region there is a complementary colour that is transmitted or reflected. The colour of the substance is nothing but the colour of the transmitted light.

e.g. Cu⁺²(aq.) ion absorbs radiations corresponding to red light and then it transmits radiations of wavelength of blue colour. Thus, Cu⁺²(aq.) ion will appears blue.
a) Transition metal ions which have completely filled d-orbitals are colourless. Because, there are no vacant d-orbitals available for d-d transition. e.g. Zn⁺² (3d¹⁰), Cd⁺²(4d¹⁰), Hg⁺² (5d¹⁰) ions are colourless.

 $\begin{aligned} &\text{Zn} (30) \to 1S^2, 2S^2, 2P^6, 3S^2, 3P^6, \underline{4S^2, 3d^{10}} \\ &\text{Cd}(48) \to 1S^2, 2S^2, 2P^6, 3S^2, 3P^6, 4S^2, 3d^{10}, 4p^6, \underline{5s^2, 4d^{10}} \\ &\text{Hg} (80) \longrightarrow 1S^2, 2S^2, 2P^6, 3S^2, 3P^6, 4S^2, 3d^{10}, 4p^6, 5s^2, 4d^{10}, 5p^6, 4f^{14}, \underline{6s^2, 5d^{10}} \end{aligned}$

b) Transition metal ions which have completely empty d-orbitals are also colourless. e.g. Sc^{+3} and Ti^{+4} ions are colourless.

Sc (21) → 1S², 2S², 2P⁶, 3S², 3P⁶, <u>4S², 3d¹</u> Sc⁺³ → 4S⁰3d⁰ Ti (22) → 1S², 2S², 2P⁶, 3S², 3P⁶, <u>4S², 3d²</u> Ti⁺⁴ → 4S⁰3d⁰

c) The ions of S and P-block elements are colorless because excitation of electrons from lower S or P orbitals to higher S or P or d orbitals requires very high amount of energy from uv region. There is no absorption of light from the visible region. Hence, ions of S and P-block elements are colourless.